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Abstract: Cyclizations of acetoxydienes 1 with Pd(PPh3)4/Et2Zn (0.05/4-5 mol-equiv.)  in Et20  at reflux, 
followed by either protonation, iodination or cyangtion, provide cis-disubstituted cyclopentanes and 
pyrrolidines 5, 7 or 9. These tandem reactions, as well as the conversions 15 - .  17 or 18 and 20 - .  22 show 
good to excellent regio- and stereocontrol, which is compared to those of  Pd-ene  ring closures of  1 and 20. 

The intramolecular allylmetalation (metallo-ene reaction) of alkene (and alkyne bonds) I --* II (Scheme 1) 
has proven to be a synthetically powerful process. 2) 
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Mg-ene reactions, for instance, excel at the possibility to trap cyclized intermediates II, M = MglIX 

with numerous electrophiles, 2a) whereas Pd-  and Ni-catalyzed cyclizations I - .  II, M = pdlIL n or NilIL n 

are stereospecific and compatible with various functionalities. 2b) 

Reactions I --* II, M = ZnR,  on the other hand, have the potential to embrace several of  these features. 

Allylzincations, however, are only scarcely described, 3) probably due to the tedious preparation of the 

allylzinc precursors I (e.g. by transmetallation of  allylic Grignard reagents with ZnBr 2 3d)). 
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We now envisaged a practical allylzincation protocol involving in situ generation of olefinic allylzinc 

intermediates 3 from dlenyi acetates ! via transmetallation of ailylpailadium intermediate 2 with diethylzinc 

(Scheme 2) 4) This tandem reaction should require only catalytic amounts of Pd(0) and >_2 tool-equiv, of 

Et2Zn (for the transmetallation 2 --, 3 and for proton-scavenging). Relative to the palladium-ene cyclizations 

of 2, it can be expected that 1) both the transmetallation 2 --, A --, 3 and the Zn-ene cyclization 3 --, 4 ar 
faster, 2) the cyclization 3 --, 4 proceeds with a different stereochemistry and 3) the cyclized product 4 is 

susceptible to a different range of derivatizations. 

Our results are summarized in Schemes 3-5 and Tables 1-2. 
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Scheme 3 
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Table 1 : Pd-Catalyzed Zinc-Ene Cyclization/Trapping Reactions of l-Acetoxy-2,7-Octadienes 1 5) 

Entry Series Y Mol-equiv. Trapping Agent Ratio (crude) Major Product a) 
ZnEt 2 (tool-equiv.) cis/ trans Yield [%] M.O.[*C] 

1 a C(SO2Ph) 2 5 aq. NH4CI 86 : 14 5a (79) solid 

2 b c/kS°'2~f ~ 5 aq. NH4CI 92 : 8 5h 45 119 
so2 ~ f 

3 c N-CPh 3 5 aq. NH4CI 98 : 2 5¢ (79) b) oil 
4 d N-Phenylfluorenyl 5 aq. NH4CI >99.8 : 0.2 5d (88) oil 
5 e N-Ts 4 aq. NH4CI 96 : 4 5e c) 44 47 
6 f C(CO2Et) 2 3 aq. NH4CI 13 (83) oil 
7 a C(SO2Ph) 2 5 12 (7) 83 : 17 7a 62 160 

8 b k ~  5 12 (8.5) 9 2 : 8  7b 43 143 

9 d N-Phenylfluorenyl 5 >98 : 2 7d (87) oil 
10 e N-Ts 5 96 : 4 7e c) (51) oil 
11 a C(SO2Ph) 2 4 83 : 17 9a 58 157 

12 d 4 >98 : 2 9d (73) oil N-Phenylfluorenyl 

12 (9) 
12 (4.5) 
1) CuCN(LiCl) 2 (1.0) 
2) TsCN (6) 
1) CuCN(LiCI) 2 (1.0) 
2) TsCN (6) 

a) Yields after crystallization (FC). Cis-configuration assigned based on 8-C(a) (13C_NMR)" 6a) 
D.r. >98:2, except entry 1 (Sa/6a = 86:14), entry 10 (7e/$e = 96:4) and entry 11 (9a/10a = 96:4). b) Partial 
decomposition of 5c during FC (SIO2). c) Separated (FC) from N-allylsulfonamide 12 (19-28% from 1). 

Pd(PPh3) 4 (0.05 tool-equiv.) was added to a stirred 0.05 M__ solution of acetoxydiene la  [Y = C(SO2Ph)2] 
in Et20 under Ar. After 3 min, Et2Zn (5 tool-equiv.) was added dropwise to the yellow solution which 
became colorless. Heating of the mixture at reflux until reappearance of the yellow color (1 h), quenching 
with sat. aq. NH4CI at 0°C and flash chromatography (FC) furnished an 86:14-mixture 5a/6a in 79% yield 
(Scheme 3, Table 1, entry 1). Under otherwise identical reaction conditions, similar reaction rates, yields and 
ratios of 5a/6a were observed when replacing the acetoxy group in la  by a PhCO2-, MeOCO2-, 
t-BuOCO2- , or CI group. Only unchanged educt la  was isolated when replacing the Et2Zn by Me2Zn or in 
the absence of Pd(0). Whereas the Et2Zn-mediated cyclization la  --* 5a/6a proceeded smoothly at 35"C 
allylpalladations of the same substrate la  required temperatures above 60 ° C whether in tandem with 
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p-elimination [AcOH, reflux giving IV, Y = C(SO2Ph)2 ] 6d) or l-alkenyitin coupling (THF, reflux, yielding 
11, Scheme 3 6a)). While these results are consistent with the postulated catalytic cycle (Scheme 2), they 
should not be taken as a rigorous proof. 7) 

Neverthless, it is clear that the diastereoselectivities of the Pd- and Zn-ene reactions ( la  --* 11, l a  --* 5a) 
are reversed. The cis-selectivity of the allylzincation becomes even more pronounced and even complete in 
the ZnEt2-mediated cyclizations of the 1,3-benzodithioi,l,l,3,3,-tetraoxide derived acetoxydiene lb  (yielding 

5b/6b = 92:8, 55%, entry 2), the N-trityl-N.N-dienylamine lc (affording 5c/6c = 98:2, 79%, entry 3) and the 
N-phenyifluorenyl-protected N,N-dienylamine ld (giving pure 5d, 88%, entry 4). 

With increased leaving group ability of the bridge constituent Y, intermediates 3 are prone to 
elimination. 8) For instance, during the transformation le  ---* 5e/6e (96:4, 53%) allylzinc intermediate 3e 

underwent partial elimination giving N-tosylailyl amide 12 (19%, entry 5). A similar process became 
predominant with malonate If  giving solely the elimination/allylation product 13 (83%, entry 6). 

We then explored synthetically more relevant derivatizations of cyclized alkylzinc species 4. Quenching 
the above described allylzincation mixture of la  by addition of a 1 M solution of 12 in THF until the violet 

color persisted (7 mol-equiv.) followed by work up with sat. aq. Na2S203/Et20 and FC gave an 83:17 
mixture of iodomethylvinyicyclopentanes 7a/ga (78%) from which the pure cis-isomer 7a was isolated by 
crystallization (62% from la,  entry 7). The crude product mixture contained minor amounts of 14 (3%, IH- 

NMR) and 5a (7%), corresponding to protonolysis of organozinc intermediates 3 and 4, respectively. The 

same protocol but employing less Et2Zn (2.2 mol-equiv.) yielded more 14 (12%) and 5a (12%) at the expense 
of 7a/ga (47%), reflecting the role of diethylzinc as a proton scavenger (Scheme 2). Allyizincation/iodination 
of substrates lb,  ld  and le  also gave mixtures of iodides 7/8 (43 to 87%, entries 8-10) with identical 
cis/trans ratios as observed in entries 2. 4. and 5. 

Cyanation 9) of the cyclized alkylzine intermediates 3a and 3d was accomplished after transmetailation 
with Cu(I) giving cis-nitriles 9a (58% after crystallization) and 9d (73%), respectively (entries 11, 12). 10) 

In view of the bimolecular addition of allylzinc bromides to silyl-l-alkynes 3c) (THF, 60°C), it was not 
surprising that acetoxyenynes 15 underwent efficient intramolecular zinc-ene reactions (Scheme 4, Table 2). 

•o•/•s / £\ "7 -S~R~ 
A iR 1 L \'~ ZnR 

15 16 

PhS02...S02Ph . . . .  PhSOs .S02Ph 
l~n,  Pd% CO 

\" X / / y  ~'Si(iPr)3 
17:X=H;18:X=I  0 19 

Table 2: Pd-Catalyzed Zinc-Ene Cyclization / Trapping Reaction of l -Acetoxy-2-en-7ynes 15. 5) 

Entry Series R 1 Mol-equiv. Trapping Agent P r o d u c t a) 
ZnEt 2 (Mol-equiv.) Yield [%] M.p. [°C] 

13 f Me 5 aq. NH4CI 17f 87 oil 

14 g Et 5 aq. NH4CI 17g 88 oil 
15 f Me 5 12 (8.5) lgf  b) 55 b) oil 

16 h i-Pr 5 12 (6.5) 18h 81 156 

a) Olefinic configuration determined via NOESY measurements, b) Separated (FC) from 17f (23% from 15f). 

Protonation of the transient l,l-dimetalloalkenes 16f and 16g (aq. NH4CI ) provided exclusively (E)- 
alkenylsilanes 17f and 17g (87 - 88%), respectively, corresponding to clean cis-additions 15 --. 16. Iodination 
of cyclized trimethylsilyl intermediate 16f produced ~ 100% selectively (Z)-l-iodo-l-(trimethylsilyl)alkene 

lgf  in 55% yield, accompanied by the protonolysis product 17f (23%). Whatever the origin of this side 
reaction, it was efficiently suppressed in the allylzincation/iodination of triisopropylsilylalkyne 15h giving 
crystalline (Z)- l - iodo- l -TIPS-alkene 18h (81%). The bulky silyl group in lgh is perfectly compatible with 



7942 

Pd-mediated carbonylation (as previously described for an acyclic iodosilyldiene 3c)) providing 
multifunctionai exo-methylene bicyclooctenone 19 (57%). 11) 

Finally, it is worth noting that intramolecular allylmetalation of a 4-butenyl chain which is attached at 
the ailylic center C(2) (type-II metallo-ene process) showed an interesting metal dependent reversal of regio- 
and stereo-selection (Scheme 5). 

Scheme 5 

I I 7 ~/*oPd(a~)2' 
p h i l / ,  PPt~, 

1 AcOH, 80 °, 

[ ' ~  1)5 % Pd(PPh3)4, ] ' ~ , , , , ,  H B 
Ph 1N,/N~'~ 3 ~ 5 eq. ZnEt2, 3 ~ 1  =h 

;Ac " E,2o.38o,,  M 
6.5h, 87% 

23 20 2)6eq 12,31% 22 JAg=3.SHz 21a: M=Zn(Et); 21b: M=PdULn 

Pd-catalyzed zinc-ene ring closure of acetoxydiene 20 was relatively slow and gave, after iodination, 
cis-iodomethylcyclohexane 22 as a single isolable product (31%). This result corresponds to a C-C-bond 
formation at the more substituted terminal C(I) of allylzinc precursor (Z)-21a. Conversely, Pd-ene 
cyclization/#-elimination of the same acetoxydiene 20 12) provided solely (E)-alkylidenecyclohexane 23 
(87%) indicating bond formation at the less substituted C(3) of the syn-~ 3 (E-~l)-allylpalladium unit in 2lb. 

We conclude that Pd-catalyzed cyclizations of acetoxy-dienes and -enynes, either in the presence or 
absence of Et2Zn, can give complementary results which may be put to advantage in organic synthesis. 
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